If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2-6n-4=0
a = 8; b = -6; c = -4;
Δ = b2-4ac
Δ = -62-4·8·(-4)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{41}}{2*8}=\frac{6-2\sqrt{41}}{16} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{41}}{2*8}=\frac{6+2\sqrt{41}}{16} $
| 12x-14x+6=32 | | c=7+1 | | 3(3x–2)=-14x+14 | | 4800=x-2 | | 22=n+5 | | G(X)=-2f(1)+3 | | b+35/9=6 | | 2x-28=96 | | G(X)=-2f(0)+3 | | 43-5y-1=-12y | | 11(4–6x)+5(13x+1)=9 | | m-1.2=-2.5 | | G(X)=-2f(-1)+3 | | 35=(x)(200) | | -c/2=-6 | | 2x-4=-2x-8 | | 14x+4+2x+9+5x-1=180 | | 18=12+y | | d/5=15/25 | | 10=f+5 | | 221=17a | | r/3+4=r/2-1 | | G(X)=-2f(-2)+3 | | 16+8d=32 | | 18–f=11 | | 2(10x-4)=32 | | 2-(2x+2)=2(x+3)+3 | | 41.65+x=43.73 | | –19=h/7-24 | | 5c+1=0 | | 54+2x+18=180 | | 4x-1+3x=11 |